EACH NATURAL NUMBER IS OF THE FORM x 2 + (2y) 2 + z(z + 1)/2

نویسندگان

  • Zhi-Wei Sun
  • ZHI-WEI SUN
چکیده

In this paper we investigate mixed sums of squares and triangular numbers. By means of q-series, we prove that any natural number n can be written as x + (2y) + Tz with x, y, z ∈ Z and Tz = z(z + 1)/2, this is stronger than a conjecture of Chen. Also, we can express n in any of the following forms: x + 2y + Tz , x 2 + 2y + 2Tz , x 2 + 2y + 4Tz , x 2 + 4y + 2Tz , 2x + 2y + Tz , x 2 + 2Ty + 2Tz , x 2 + 4Ty + Tz , x 2 + 4Ty + 2Tz , 2x + Ty + Tz , 2x 2 + 2Ty + Tz , 2x 2 + 4Ty + Tz , Tx + 4Ty + Tz , 2Tx + 2Ty + Tz , 2Tx + 4Ty + Tz . Concerning the converse we establish several theorems and make some conjectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Each Natural Number Is of the Form X

In this paper we prove that any natural number n can be written as x + y + Tz with x, y, z ∈ Z and Tz = z(z + 1)/2. Also, we can express n in any of the following forms: x + y + 2Tz , x 2 + 2y + Tz , x 2 + 2y + 2Tz , x 2 + 2y + 4Tz , x + 2Ty + 2Tz , x 2 + 4Ty + Tz , x 2 + 4Ty + 2Tz , 2x + Ty + Tz , 2x 2 + 2Ty + Tz , 2x 2 + 4Ty + Tz , Tx + 4Ty + Tz , 2Tx + 2Ty + Tz , 2Tx + 4Ty + Tz . Concerning ...

متن کامل

Binary Quadratic Forms , Genus Theory , and Primes of the Form p = x 2 + ny 2

In this paper, we will develop the theory of binary quadratic forms and elementary genus theory, which together give an interesting and surprisingly powerful elementary technique in algebraic number theory. This is all motivated by a problem in number theory that dates back at least to Fermat: for a given positive integer n, characterizing all the primes which can be written p = x + ny for some...

متن کامل

Fractional hypergeometric functions for function fields and weak transcendence in positive characteristic

Saturday, Sep 23 On some results and problems involving Hardy’s function Z(t) Aleksandar Ivić Serbian Academy of Arts and Sciences, Belgrade Hardy’s classical function Z(t) is defined, for real t, as Z(t) := ζ( 1 2 + it)χ( 1 2 + it)−1/2, ζ(s) = χ(s)ζ(1− s), This talk will cover some problems involving Hardy’s function, including moments at points where |Z(t)| is maximal, large values of Hardy’s...

متن کامل

Complete Tripartite Graphs and their Competition Numbers

We present a piecewise formula for the competition numbers of the complete tripartite graphs. For positive integers x, y and z where 2 ≤ x ≤ y ≤ z, the competition number of the complete tripartite graph Kx,y,z is yz − z − y − x + 3 whenever x 6= y and yz − 2y − z + 4 otherwise.

متن کامل

The Maximum Number of Edges in a Three-Dimensional Grid-Drawing

An exact formula is given for the maximum number of edges in a graph that admits a three-dimensional grid-drawing contained in a given bounding box. A three-dimensional (straight-line) grid-drawing of a graph represents the vertices by distinct points in Z, and represents each edge by a line-segment between its endpoints that does not intersect any other vertex, and does not intersect any other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005